首页> 外文OA文献 >Accurate garbage collection in uncooperative environments revisited
【2h】

Accurate garbage collection in uncooperative environments revisited

机译:重新访问非合作环境中的准确垃圾收集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Implementing a concurrent programming language such as Java by means of a translator to an existing language is attractive as it provides portability over all platforms supported by the host language and reduces development time - as many low-level tasks can be delegated to the host compiler. The C and C++ programming languages are popular choices for many language implementations due to the availability of efficient compilers on a wide range of platforms. For garbage-collected languages, however, they are not a perfect match as no support is provided for accurately discovering pointers to heap-allocated data on thread stacks. We evaluate several previously published techniques and propose a new mechanism, lazy pointer stacks, for performing accurate garbage collection in such uncooperative environments. We implemented the new technique in the Ovm Java virtual machine with our own Java-to-C/C++ compiler using GCC as a back-end compiler. Our extensive experimental results confirm that lazy pointer stacks outperform existing approaches: we provide a speedup of 4.5 over Henderson's accurate collector with a 17 increase in code size. Accurate collection is essential in the context of real-time systems, we thus validate our approach with the implementation of a real-time concurrent garbage collection algorithm.
机译:通过将翻译器翻译成现有语言来实现诸如Java之类的并发编程语言之所以具有吸引力,是因为它可以在宿主语言支持的所有平台上提供可移植性,并减少了开发时间-因为许多低级任务可以委托给宿主编译器。由于在各种平台上都可以使用高效的编译器,因此C和C ++编程语言是许多语言实现的流行选择。但是,对于垃圾回收的语言,它们并不是完美的匹配,因为没有提供支持来准确发现指向线程堆栈上堆分配数据的指针。我们评估了几种以前发布的技术,并提出了一种新的机制,即惰性指针堆栈,用于在这种不合作的环境中执行准确的垃圾收集。我们使用GCC作为后端编译器,使用自己的Java到C / C ++编译器在Ovm Java虚拟机中实现了这项新技术。我们广泛的实验结果证实,惰性指针堆栈的性能优于现有方法:与Henderson的精确收集器相比,我们提供了4.5的加速,并且代码大小增加了17。准确的收集对于实时系统至关重要,因此,我们通过实现实时并发垃圾收集算法来验证我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号